[printer friendly version]


"An integrated diamond nanophotonics platform for quantum optical networks"

Dr. Denis Sukachev
Department of Physics, Harvard University


Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable optical nonlinearities at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to diamond nanodevices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable states and observe optical switching at the single-photon level. Raman transitions are used to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. By measuring intensity correlations of indistinguishable Raman photons emitted into a single waveguide, we observe a quantum interference effect resulting from the superradiant emission of two entangled SiV centers.

Wednesday, November 16, 2016
IQSE 578, 12:30 Noon
Mitchell Physics Building

Institute for Quantum Science and Engineering
Texas A&M University

(Pizza, salad, and soda to be served at 12:00 noon)

Host: Dr. Alexey Akimov